O.P.Code: 20ME0309

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Regular & Supplementary Examinations August-2023 MATERIALS SCIENCE

(Mechanical Engineering)

		(Mechanical Engineering)			
Tin	ıe:	3 Hours	Max.	Mark	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	D	efine the following terms:	CO ₁	L1	12M
	(i)) Space lattice (ii) Unit cell iii)primitive cell iv) Bonding energy			
	$\mathbf{v})$	Atomic packing factor (vi) crystal structure			
		OR			
2	a	Differentiate between composite and alloy.	CO1	L2	6M
	b	Evaluate metallic bond and list out characteristics compound.	CO1	L5	6M
		UNIT-II			
3	9	Define congruent-melting alloys, Estimate components for following	CO2	L6	6M
	•	systems (i) Au-Cu System, (ii) Ice –water system, (iii) Al2O3-Cr2O3	002	LU	OIVI
	h	Evaluate cooling curve of binary eutectic system.	CO2	L4	6M
	D	OR	COZ	LT	OIVI
4	a	Evaluate Lever rule with tie line.	CO3	L4	6M
7	a b		CO3	L1	6M
	U	What are the eutectoid and eutectic reactions in Cu-Ni & Al-Cu binary	COS	LI	OIVI
		phase diagram?			
		UNIT-III			
5		What is steel? What are the classifications of the steels?	CO ₃	L1	6 M
	b	Explain the structure and properties of Spheroidal graphite cast iron.	CO ₃	L2	6M
		OR			
6	a	Which steel is called Hadfield steels? Evaluate it.	CO ₃	L2	6M
	b	Compare the difference between steel and tool steel? List out its	CO ₃	L4	6M
		applications.			
		UNIT-IV			
7	a	Discus in details about heat treatment process of plastic.	CO4	L2	6M
	b	Draw a diagram of critical cooling rate on TTT diagram and briefly	CO4	L1	6M
		explain it			
		OR			
8	a	What are heat treatment processes? Explain briefly.	CO4	L1	6M
	b	What determines fracture toughness? List out what factors are effecting	CO4	L1	6M
		fracture toughness.			
		UNIT-V			
9	a		CO5	L4	6M
,	a b	What is ceramic material? Explain crystalline ceramics.		L4 L2	
	U	· · · · · · · · · · · · · · · · · · ·	CO5	LZ	6M
10		OR What is the polymor? Explain the polymor metric composite	COC	T 1	CM
10	a	1 7 1 7	CO6	L1	6M
	b	What are the applications of fiber reinforced composites?	CO6	L1	6M
		*** END ***			

the state of the state of

THE PART OF THE PROPERTY OF THE PART OF TH

Charles and the second second

TOTAL BUILDING

and the second

A part -

...

And the state of t

to provide the management and the latest and the Research

The state of

ACA AL 100

MA AL DES TO THE RESERVE OF THE PARTY OF THE

1000

the fit was been a superfit to a proper to the same of the same of

- 0.0